Direction scientifique
Transfert de connaissances vers l'industrie

Nos Thèses par thème

Toutes les offres [+]

Neurones oscillants pour le calcul d'optimisation et la mémoire associative

Département Composants Silicium (LETI)

Laboratoire d'Intégration des Composants pour la Logique

Niveau M2, formation en micro/nanoélectronique (technologie et conception) - des connaissances théorique et pratiques des réseaux de neurones pour l'IA sont un avantage

01-10-2021

SL-DRT-21-0393

louis.hutin@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

Les réseaux de Hopfield sont des réseaux de neurones récurrents qui permettent de réaliser des fonctions de mémoire associative. En soumettant leurs éléments à des fluctuations ajustables, ces réseaux peuvent également être adaptés à la résolution efficace de problèmes d'optimisation combinatoire NP-difficiles. De tels problèmes, dont la résolution exacte en temps polynomial est hors de portée de machines de Turing déterministes, trouvent des applications dans des domaines tels que les opérations logistiques, le design de circuits (e.g. placement-routage), le diagnostic médical, la gestion de réseaux intelligents (e.g. smart grid), la stratégie de management etc. Le sujet proposé s'inscrit dans le contexte de la recherche d'accélérateurs hardware pour l'intelligence artificielle. L'approche considérée en particulier porte sur le choix d'oscillateurs verrouillés en phase par injection (ILO: Injection-Locked Oscillators) pour réaliser la fonction du neurone. L'objectif sera la conception, la fabrication et la démonstration de réseaux de neurones binaires couplés par des poids synaptiques ajustables pour réaliser des fonctions de mémoire associative (ex: reconnaissance de forme) ou d'optimisation combinatoire (ex: coloration de graphe, partitionnement maximal,?).

Télécharger l'offre (.zip)

Synthèses et études de matériaux organiques chiraux pour le transport de charges dans les semi-conducteurs organiques

Département d'Optronique (LETI)

Laboratoire des Composants Emissifs

Physico-chimiste ou chimiste organicien avec de fortes connaissances en physique du semi-conducteur organique

01-10-2021

SL-DRT-21-0395

benoit.racine@cea.fr

Photonique, imageurs et écrans (.pdf)

La détection et la manipulation de l'état de polarisation de la lumière connaît actuellement un engouement scientifique important, du fait notamment de l'intérêt d'utiliser une lumière circulairement polarisée (LCP) dans de nombreux domaines d'importance sociétale tels que les technologies d'affichage, la transmission d'informations, la cryptographie, l'imagerie bio-médicale ou encore la détection de molécules chirales d'intérêt pharmaceutique. De part leur capacité à interagir spécifiquement avec une LCP et à moduler sa polarisation, les matériaux moléculaires chiraux s'imposent comme un élément de choix pour explorer ces applications innovantes et envisager de nouvelles potentialités en électronique organique. De plus, la propriété unique des molécules chirales à induire une sélectivité de spin électronique dans la conduction de courant électrique (CISS effect pour Chiral Induced Spin Selectivity) ouvre également des opportunités dans le domaine de la spintronique organique. En conséquence, la synthèse de semi-conducteurs chiraux pi conjugués innovants, présentant une modulation aisée de leurs propriétés physico-chimiques et l'intégration de ces matériaux dans des dispositifs optoélectroniques de type OLEDs, OPDs ou OFETs présente un intérêt aussi bien fondamental qu'applicatif. Le projet de thèse se fera en collaboration avec un laboratoire de chimie du CNRS et le laboratoire du CEA/LETI le LCEM spécalisé dans les semi-conducteurs organiques. L'étudiant de thèse aura pour objectifs de synthétiser des nouveaux transporteurs de charges organiques chiraux et de caractériser leurs propriétés photophysiques (d'absorption et d'émission) et opto-électronique. Les molécules les plus prometteuses seront intégrées dans des dispositifs OLEDs et OPDs. La partie synthèse et caractérisation photophysiques (spectromètre de dichroisme circulaire, spectromètre de luminescence non polarisée et circulairement polarisée, RPE, ?) seront réalisées au laboratoire de Chimie du CNRS (Institut des Sciences Chimiques de Rennes). L'intégration des molécules dans des dispositifs OLEDs et OPDs se fera au sein du laboratoire LCEM du CEA Grenoble où se trouve les équipements de dépôt (chambre PVD pour matériaux organiques) et les moyens de caractérisation opto-électronique (IVL, C(V), TLM, Photocourant, effet hall, ?).

Télécharger l'offre (.zip)

Étude, évaluation et validation des performances d'un système de mesure du bore par absorption neutronique

Département Métrologie Instrumentation et Information (LIST)

Laboratoire Capteurs et Architectures Electroniques

Master 2 ou diplôme d'ingénieur

01-10-2021

SL-DRT-21-0397

adrien.sari@cea.fr

La concentration en bore dans le fluide du circuit primaire d'un réacteur nucléaire doit être finement maîtrisée afin de garantir la sûreté de ce dernier. En effet, une excursion de la concentration en bore pourrait potentiellement entraîner un risque de criticité. Un système de mesure nucléaire en ligne ayant pour fonction de surveiller la concentration en bore dans le fluide primaire du réacteur est ainsi nécessaire. Un tel système est couramment dénommé « boremètre ». Le sujet de thèse proposé est constitué de trois axes de recherche. Le premier axe vise à étudier par simulation Monte-Carlo, puis conceptualiser et formaliser théoriquement le comportement des deux principaux critères de performances (taux de comptage et contraste) sous l'influence des différentes caractéristiques du boremètre. Le second axe de recherche a pour objectif d'évaluer et de valider expérimentalement l'interprétation des effets mis en jeu au sein du boremètre et les concepts théoriques formulés. Ces travaux expérimentaux feront l'objet d'une collaboration étroite avec le Laboratoire National Henri Becquerel (LNHB). Le troisième axe de recherche de cette thèse a pour ambition de concevoir un boremètre innovant destiné à mesurer la concentration en bore dans le fluide primaire au plus proche du c?ur du réacteur nucléaire. Un tel système permettrait d'identifier le plus rapidement possible une anomalie sur la valeur de la concentration en bore au niveau du c?ur du réacteur. Cependant, les contraintes imposées par un tel environnement de mesure devront être prises en compte, et une méthodologie de mesure adaptée sera élaborée. Différentes approches de compensation en température et en débit du fluide seront l'objet d'investigations poussées.

Télécharger l'offre (.zip)

Radiolocalisation Profonde en Milieux Complexes via Méthodes d'Intelligence Artificielle

Département Systèmes (LETI)

Laboratoire Communication des Objets Intelligents

Master 2 de Recherche en Traitement du Signal (application Telecoms) et/ou Intelligence Artificielle

01-10-2021

SL-DRT-21-0398

benoit.denis@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Diverses technologies et standards de localisation sans fil à bas coût ont vu le jour ces dernières années (ex. standard UWB/IEEE802.15.4z, GPS RTK « low cost », radio cellulaire en bandes millimétriques...), couvrant ainsi les besoins d'une pluralité de nouveaux services topo-dépendants (ex. mobilité durable et transports intelligents, villes intelligentes, industrie 4.0, cyber-sécurité, etc.). Toutefois, en dépit des bonnes performances théoriques prêtées à ces systèmes, la présence d'obstructions radio et de trajets multiples dégrade en pratique considérablement la précision et la continuité de localisation (ex. localisation véhiculaire en canyons urbains, localisation indoor en milieux industriels denses?). Dans le cadre de cette thèse, on se propose d'évaluer le potentiel d'approches issues du domaine de l'intelligence artificielle, et en particulier de l'apprentissage automatique (profond), pour appréhender la richesse et la complexité des signaux radio reçus au regard du problème de localisation. Typiquement, on cherchera à tirer profit de l'information de localisation « cachée », que peuvent recéler les signaux multi-trajets conjointement observables au niveau de plusieurs liens radio en situation de mobilité. Contrairement aux traitements conventionnels, qui reposent majoritairement sur des modèles radio paramétriques posés a priori, simplistes et difficiles à calibrer, on cherchera alors à apprendre puis à généraliser les relations fortement non-linéaires unissant métriques radio (c.-à-d., de métriques extraites de signaux multi-trajets/multi-liens à grande dimension) et descripteurs de localisation (ex. position relative/absolue, vitesse, orientation, conditions de visibilité?). Des stratégies de localisation dites « profondes » seront ensuite proposées afin de prédire, corriger et compléter les attributs de localisation manquants et/ou erronés, directement en termes de positionnement et de poursuite au niveau système (c.-à-d., sans en passer par des étapes intermédiaires de correction, au niveau de chaque lien radio indépendamment). Les approches proposées seront alimentées et testées au moyen de larges bases de données radio, comprenant des mesures collectées sur le terrain à partir de dispositifs radio réels, ainsi que des données synthétiques issues de simulations déterministes (de type tracer de rayons).

Télécharger l'offre (.zip)

Calculs quantiques d'optimisation sur plateforme NISQ

Département Systèmes et Circuits Intégrés Numériques

Laboratoire pour la Confiance des sYstèmes de calcuL

M2R ou ingénieur avec connaissance en programmation et/ou optimisation

01-10-2021

SL-DRT-21-0400

stephane.louise@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Les processeurs quantiques actuels sont loin encore de ressembler à l'image idéalisée que pouvaient se faire les pionniers de l'algorithmie quantique : ils ont un mauvais rapport signal/bruit, ont un petit nombre de qubits et une interconnexion limitée qui complique encore la prise en main et la programmation. Cela ne signifie pas pour autant qu'ils sont seulement des prototypes sans utilité pratique. De fait ce type de systèmes de calculs quantiques aussi appelés NISQ d'après l'acronyme anglais "Noisy Intermediate Scale Quantum processors" (ou processeurs Quantiques Bruités de Taille Intermédiaire) sera l'avenir du calcul quantique pour les années qui viennent et pour le futur prévisible. De ce fait il serait de première importance de faire des investigations sur le type de calculs et d'algorithmes qu'on peut mettre en ?uvre sur ces machines, en particulier dans le cadre des problèmes d'optimisation. Une piste particulièrement intéressante est celle des algorithmes dits hybrides qui entrecroisent des parties quantiquement accélérées avec des calculs sur des ordinateurs standards. Dans le cadre de cette thèse, nous nous proposons de faire des recherches sur les limitations de ces premiers ordinateurs NISQ déjà accessibles de façon plus ou moins publique (soit sur simulateurs ou machines réelles) et comment les utiliser malgré ces limitations dans le cadre des algorithmes d'optimisation.

Télécharger l'offre (.zip)

Nouvelle couche physique millimétrique pour la 5G-NR IoT

Département Systèmes (LETI)

Laboratoire Communication des Objets Intelligents

Bac+5 / Master 2 Télécoms

01-10-2021

SL-DRT-21-0410

valerian.mannoni@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Une nouvelle interface radio 5G doit être conçue, afin d'assurer une bonne fiabilité et un service de latence acceptable pour les cas d'utilisation de l'IoT qui ne sont pas encore traités par les technologies cellulaires actuelles. Cette nouvelle interface aérienne 5G fait l'objet d'une étude dans la version 17 du 3GPP et a été appelée NR_REDCAP (Reduced Capability NR devices). La capacité de faire fonctionner la NR-Light sur les bandes millimétriques est considérée comme nécessaire pour les applications industrielles 4.0 et pour les réseaux privés en raison de sa portée limitée et de sa forte réutilisation spatiale. L'objectif de la thèse de doctorat est donc de proposer et d'étudier une nouvelle couche physique opérant sur les bandes millimétriques pour la 5G-NR IoT répondant aux défis ci-dessus. Les résultats attendus sont les suivants : - Une meilleure compréhension des défis et des facteurs clés de la 5G-NR dans la bande millimétrique - Proposition d'une nouvelle couche physique pour le 5G-NR IoT avec le schéma MIMO associé - Proposition et étude du schéma d'accès multiple basé sur le MIMO - L'identification et l'évaluation des principaux outils/concepts de la 5G NR-Light dans la bande d'ondes millimétriques pour répondre à ces exigences et atteindre l'objectif de réduction de la complexité et des coûts des composants NR-Light tout en atténuant la dégradation des performances de cette réduction de la complexité, par exemple la dégradation de la couverture.

Télécharger l'offre (.zip)

52 (Page 5 sur 9)
first   previous  3 - 4 - 5 - 6 - 7  next   last
-->

Voir toutes nos offres