Direction scientifique
Transfert de connaissances vers l'industrie

Nos Thèses par thème

Développement d'un dispositif médical pour la détection simultanée haute sensibilité de biomarqueurs sanguins pour la prise en charge terrain des patients en souffrance cardiaque

Département Microtechnologies pour la Biologie et la Santé (LETI)

Laboratoire Biologie et Architecture Microfluidiques

Ecole d'ingénieur ou master en ingénierie biomédicale

01-09-2020

SL-DRT-20-0451

myriam.cubizolles@cea.fr

Technologies pour la santé et l'environnement, dispositifs médicaux (.pdf)

Les systèmes de santé doivent s'adapter à de nouvelles contraintes sociétales et économiques, et elles s'avèrent un défi majeur à relever dans le cadre de la médecine du futur. Dans les situations d'urgence où la prise de décision du praticien doit être rapide et efficace, les dispositifs d'analyses in vitro au chevet du patient (POC) fournissent une aide précieuse au diagnostic pour améliorer le soin des patients. Le sujet de thèse proposé s'inscrit dans ce contexte, afin d'explorer une nouvelle voie de dosage de biomarqueurs sanguins (protéines, petites molécules), alternative au « gold standard » que sont les immuno-essais de type ELISA, utilisant une immuno-détection couplée à une amplification enzymatique. Nous proposons d'étudier une approche innovante afin de mettre au point un dispositif médical pour la détection très sensible de différents biomarqueurs sanguins représentatifs de pathologies cardiaques. Cette démarche est basée sur l'utilisation de réactifs originaux (aptamères) permettant une amplification biomoléculaire isotherme multiplexée, rapide et haute sensibilité, couplée à l'intégration et l'automatisation du protocole dans des cartouches microfluidiques dédiées. Le dispositif médical développé sera testé sur des échantillons cliniques.

Télécharger l'offre (.zip)

Evolutions microstructurales de matériaux issus de fabrication additive lors d'un traitement de compression isostatique à chaud : modélisation et étude expérimentale

Département Thermique Biomasse et Hydrogène (LITEN)

Laboratoire Conception et Assemblages

Master 2 métallurgie. Calcul scientifique

01-10-2020

SL-DRT-20-0470

emmanuel.rigal@cea.fr

Fabrication additive, nouvelles voies d'économie de matériaux (.pdf)

Les procédés de fabrication additive sont considérés comme des techniques d'avenir pour l'obtention de composants métalliques à partir de poudres ou fils. Les matériaux obtenus sont caractérisés par des microstructures très différentes de celles de leurs homologues coulés ou forgés. Elles sont hors d'équilibre, parfois anisotropes, présentent des intérêts (forte densité de dislocations par exemple) mais aussi des défauts (pores, infondus) nuisibles à certaines propriétés mécaniques (fatigue, fluage). Les défauts (ou leur nocivité) peuvent être diminués par un traitement thermique sous pression de gaz (CIC), au prix d'un effet de recuit qui adoucit le matériau. L'objectif de la thèse est de modéliser les évolutions microstructurales lors du traitement afin d'optimiser celui-ci, c'est-à-dire être capable de l'adapter à une microstructure de départ donnée, de diminuer suffisamment les défauts en contenant le recuit. Une caractérisation fine des microstructures sera nécessaire (défauts, taille de grain, densité de dislocations, précipités, texture?) afin d'alimenter le logiciel de simulation DIGIMU qui utilise la méthode Level set pour simuler, par calcul aux éléments finis, l'évolution d'un volume élémentaire représentatif d'une microstructure lors d'un chargement thermomécanique. Le logiciel devra être enrichi. La comparaison modèle/expérience permettra de juger la pertinence des résultats (cycles de CIC sur échantillon). On mesurera l'impact de cycles de CIC optimisés sur les propriétés mécaniques des matériaux d'étude (a priori, essentiellement l'acier 316L).

Télécharger l'offre (.zip)

Transmetteur intégré bidirectionnel dédié à la 5G MMW dans un système de formation de faisceau hybride et numérique

Département Architectures Conception et Logiciels Embarqués (LIST-LETI)

Laboratoire Architectures Intégrées Radiofréquences

Master 2 / ingénieur en conceptinon microelectronique RF

01-10-2020

SL-DRT-20-0478

baudouin.martineau@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Cette thèse aborde le sujet des émetteurs-récepteurs d'ondes millimétriques compacts et économiques dans le contexte de la nouvelle norme 5G FR2. En effet, un nombre considérable de puces et une conception économe en surface seront nécessaires pour l'utilisation des techniques de formation de faisceau MIMO hybride et numérique. Cependant, les conceptions d'émetteur-récepteur conventionnelles utilisent une approche bidirectionnelle basée sur un commutateur avec un émetteur (Tx) et un récepteur (Rx) fonctionnant alternativement en duplex temporel. Pour cette raison, un émetteur-récepteur bidirectionnel partageant complètement les amplificateurs et les réseaux correspondants entre l'émetteur et le récepteur est proposé. De plus, un déphaseur bidirectionnel, un mélangeur en quadrature et un amplificateur en bande de base seront étudiés et conçus afin d'offrir une solution complète pour une architecture système compatible avec une approche hybride ou numérique. La thèse portera sur l'architecture, la conception et la mesure de tels blocs en émetteur-récepteur autonome et complet. L'innovation attendue englobera plusieurs aspects: interface frontale bidirectionnelle compatible avec la formation de faisceau aux fréquences mmW, multiplication LO et génération en quadrature locale ainsi que l'utilisation de technologies CMOS SOI. Cette recherche doctorale permettra de travailler dans des disciplines interdisciplinaires allant des ondes millimétriques à la conception analogique en bande de base ainsi qu'à l'architecture de systèmes émetteur-récepteur, offrant un très large éventail d'expériences et de compétences.

Télécharger l'offre (.zip)

Etude d'Architectures de Composants Verticaux en GaN

Département Composants Silicium (LETI)

Laboratoire Composants Electroniques pour l'Energie

Master 2 ou Ingénieur avec connaissances en physique des composants

01-10-2020

SL-DRT-20-0481

julien.buckley@cea.fr

Matériaux et procédés émergents pour les nanotechnologies et la microélectronique (.pdf)

Le LETI transfère actuellement une technologie de dispositifs de puissance AlGaN/GaN épitaxiés sur substrats Silicium 200mm avec un industriel reconnu dans le domaine du développement des composants de puissance (Silicium, SiC, ?). Les technologies de transistors en GaN actuellement disponibles sur le marché ont une architecture latérale. Elles permettent de réaliser des circuits de conversion électrique jusqu'à environ quelques 10 kilowatt. Le passage à une architecture verticale permettra d'adresser des niveaux de puissance plus élevés au-delà du megawatt. Le travail de thèse consistera à mener une étude évaluant les performances et les propriétés physiques à la base du fonctionnement des composants verticaux réalisés sur substrats GaN. Les actions comprendront également le pilotage de la fabrication (épitaxie, dépôt, lithographie, implantation) et des mesures électriques. Des simulations par éléments finis (TCAD avec outils Synopsys) seront réalisées pour dimensionner les structures à inclure dans un réticule et par la suite tester des hypothèses physiques pour interpréter les résultats électriques.

Télécharger l'offre (.zip)

Nanocomposites Al/n-SiC obtenus par le procédé de fabrication additive de fusion laser sur lit de poudre.

Département des Technologies des NanoMatériaux (LITEN)

Laboratoire de Formulation des Matériaux

Master 2 Sciences des matériaux

01-11-2020

SL-DRT-20-0483

mathieu.soulier@cea.fr

Matériaux et procédés émergents pour les nanotechnologies et la microélectronique (.pdf)

Le matériau composite constitué d'une matrice métallique d'aluminium associé à des renforts de carbure de silicium a trouvé des débouchés dans de nombreuses applications industrielles, allant de l'automobile et l'armement à l'aérospatial, en autorisant l'allègement des pièces grâce à un rapport module de Young/densité largement supérieurs à celui des aciers ou des alliages de titane. Le sujet vise à développer ce matériau avec des renforts SiC nanométriques pour améliorer la raideur du matériau sans modifier l'allongement à la rupture avec une mise en forme par fabrication additive, suivant le procédé de fusion laser sur lit de poudre. La complexification de la forme des pièces autorisées par la fabrication additive couplée aux propriétés mécaniques avancées du nano composite doivent permettre un allègement plus poussé des pièces, ce qui s'inscrit dans les enjeux stratégiques d'économie de matière et d'impact environnemental. Le premier objectif de la thèse sera de développer des mélanges de poudres nano composites stables et homogènes en évaluant deux voies différentes: mélangeur à pales pour revêtir les particules d'aluminium de renforts, ou le broyage pour insérer les renforts dans les particules d'aluminium. Dans le cas des particules revêtues, l'enjeu est d'identifier les conditions procédé permettant une répartition homogène des renforts dans la matrice solidifiée. Le second objectif de la thèse sera de tester le potentiel de renforts de carbures de silicium synthétisés à façon. L'idée est d'utiliser pour ce faire le procédé de pyrolyse laser qui permet une modification de la chimie de surface des renforts pour améliorer leur mouillabilité et limiter leur réactivité dans le bain fondu d'aluminium.

Télécharger l'offre (.zip)

Actionneur MEMS piézoélectrique amplifié hydrauliquement

Département Composants Silicium (LETI)

Labo Composants Micro-actuateurs

Conception mécanique, mécanique des fluides, modélisation, physique, microsystème. Des connaissances en logiciel d'éléments finis (COMSOL, ANSYS ou autre) sont un plus.

01-09-2020

SL-DRT-20-0488

laurent.mollard@cea.fr

Systèmes cyberphysiques - capteurs et actionneurs (.pdf)

Le principal objectif de la recherche sur les micro-actionneurs consiste à développer une architecture permettant l'obtention de grands déplacements et grandes forces, sur une large plage fréquentielle tout en minimisant la consommation électrique. A ce jour, aucune solution ne remplit tous ces critères. En effet les actionneurs hydrauliques ne répondent pas au critère de compacité et de fonctionnement en fréquence mais permettent des forces et des déplacements importants. De même, les actionneurs électromagnétiques répondent à une large gamme fréquentielle avec une force et un déplacement important, mais au prix d'un fort encombrement et d'une consommation importante. Enfin les actionneurs piézo-électriques présentent des déplacements limités, de l'ordre de la dizaine de micromètres, malgré l'atteinte des autres critères. La rupture technologique de la thèse consistera à amplifier hydrauliquement ces déplacements limités, en appliquant de faibles déplacements sur une grande surface, pour déplacer un liquide, et générer, par conservation du volume, des déplacements importants sur une surface mobile plus faible. Le sujet de la thèse consistera donc à développer et à intégrer dans un système MEMS (Micro Electro-Mechanical System), cette brique d'actionneur piézoélectrique amplifiée hydrauliquement (dit système HDAM pour « Hydraulic Displacement Amplification Mechanism ») et à l'optimiser.

Télécharger l'offre (.zip)

115 (Page 4 sur 20)
first   previous  2 - 3 - 4 - 5 - 6  next   last
-->

Voir toutes nos offres