Direction scientifique
Transfert de connaissances vers l'industrie

Nos Thèses par thème

Sciences pour l'ingénieur >> Matériaux et applications
21 proposition(s).

Toutes les offres [+]

Modèles sûreté/sécurité pour la charactérisation de la sécurité de dispositifs industriels

Département Systèmes (LETI)

Laboratoire Sécurité des Objets et des Systèmes Physiques

Master 2 Cybersecurié

01-10-2021

SL-DRT-21-0031

Cybersécurité : hardware et software (.pdf)

Les systèmes industriels sont souvent utilisés pour surveiller et contrôler un processus physique tel que la production et la distribution d'énergie, le nettoyage de l'eau ou les systèmes de transport. Ils sont souvent simplement appelés systèmes de contrôle de supervision et d'acquisition de données (SCADA). En raison de leur interaction avec le monde réel, la sécurité de ces systèmes est critique et tout incident peut potentiellement nuire aux humains et à l'environnement. Depuis le ver Stuxnet en 2010, ces systèmes font de plus en plus face à des cyberattaques causées par divers intrus, y compris des terroristes ou des gouvernements ennemis[1]. Comme la fréquence de ces attaques augmente, la sécurité des systèmes SCADA devient une priorité pour les organismes gouvernementaux[2]. L'un des principaux axes de recherche en cybersécurité des systèmes industriels porte sur la combinaison des propriétés de sécurité et de sûreté. La sécurité concerne les propriétés applicatives du système (par exemple, les propriétés chimiques d'une usine chimique), tandis que les propriétés de sécurité tiennent compte de la façon dont un intrus peut endommager le système. Comme le montre[3], la combinaison de la sécurité et de la sûreté est un sujet difficile car ces propriétés peuvent être dépendantes, renforçantes, antagonistes ou indépendantes. Comme le montre[4], la combinaison de la sécurité et de la sûreté dans une modélisation commune est un défi, car les deux viennent avec des sources d'explosion combinatoire. De plus, il existe des outils utilisés soit pour les analyses de sécurité, soit pour les analyses de sûreté, mais actuellement aucun outil n'est capable de traiter les deux aspects en même temps. Dans ce contexte, nous proposons une thèse de doctorat autour de la modélisation de systèmes industriels prenant en compte à la fois les propriétés de sécurité du procédé physique et les propriétés de sécurité. En plus de la définition d'un cadre ou d'un langage de modélisation précis, mais analysable automatiquement, de nombreux aspects peuvent faire partie du sujet. Par exemple, des fichiers de configuration d'automates programmables (API) pourraient être générés à partir de ce modèle afin de ne déployer que des programmes préalablement validés. Les vulnérabilités des automates peuvent être étudiées (reverse engineering de firmware, fuzzing de protocole) afin de tester la faisabilité technique des attaques trouvées. Enfin, dans un contexte de certification, les analyses de sécurité sur le modèle pourraient inclure des exigences de normes telles que CEI 62443[5] pour faciliter le processus d'évaluation.

Télécharger l'offre (.zip)

Injection de fautes et Intégrité des réseaux de neurones embarqués : attaques, protections, évaluation

Département Systèmes (LETI)

Laboratoire Sécurité des Objets et des Systèmes Physiques

Intelligence Artificielle; Microélectronique; Systèmes embarqués

01-02-2021

SL-DRT-21-0159

pierre-alain.moellic@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

Une des tendances majeures de l'Intelligence Artificielle aujourd'hui est le déploiement massif des systèmes de Machine Learning sur une multitude de plateformes embarquées. La majorité des fabricants de semi-conducteurs proposent des produits « compatibles A.I. », principalement pour des réseaux de neurones pour de l'inférence. La sécurité est un des grands freins au déploiement de ces systèmes. De nombreux travaux soulèvent des menaces aux impacts désastreux pour leur développement, comme les « adversarial examples » ou le « membership inference ». Ces travaux considèrent les algorithmes de ML selon un point de vue purement algorithmique sans prendre en considérations les particularités de leur implémentation matérielle. De plus, des études plus poussées sont indispensables sur les attaques physiques (side-channel et injection de fautes). En considérant une surface d'attaque regroupant les aspects algorithmiques et matériels, la thèse propose d'analyser des menaces de type Fault Injection Analysis (FIA) ciblant l'intégrité des modèles (tromper une prédiction) des systèmes EML et le développement de protections efficaces. Quelques travaux s'intéressent aux attaques physiques contre des réseaux de neurones embarqués mais avec des architectures très simples sur des microcontrôleurs 8-bit, ou FPGA ou en pure simulation. Ces travaux ne proposent pas encore des liens entre les modèles de fautes ou les fuites mises en évidence et les failles algorithmiques. En se basant sur l'expérience d'autres systèmes critiques (e.g., module cryptographique), la philosophie de la thèse sera de considérer conjointement le monde algorithmique et le monde physique pour mieux appréhender la complexité des menaces et développer des protections appropriées. La thèse s'intéressera aux questions scientifiques suivantes : (1) Caractérisation et exploitation de modèles de fautes : comment exploiter des disfonctionnements par injections de fautes (laser, EM ou glitch) pour tromper la prédiction d'un modèle de type réseau de neurones profond en minimisant la perturbation. (2) Evaluation des mécanismes de protections classiques : quel est la pertinence et l'efficacité des schémas de défenses classiques (e.g. mécanismes de redondances) pour ce type de systèmes et de menaces ? (3) Développement de nouvelles protections appropriées aux réseaux de neurones embarqués.

Télécharger l'offre (.zip)

Solution autonome de gestion des réseaux déterministes en utilisant les techniques de l'Intelligence Artificielle (IA)

Département Intelligence Ambiante et Systèmes Interactifs (LIST)

Laboratoire Systèmes Communiquants

01-02-2021

SL-DRT-21-0178

siwar.benhadjsaid@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

L'objectif de la thèse est d'étudier l'apport de l'Intelligence Artificielle (IA) dans le cadre de la gestion des réseaux déterministes afin d'assurer la préservation de la qualité de service (QoS) lors de l'acheminement des flux de données de bout-en-bout. Ceci permettra de concevoir une solution autonome de gestion des réseaux, capable de configurer les réseaux déterministes de la manière la plus appropriée et d'adapter la configuration selon le besoin (par exemple, nouveau terminal qui se connecte au réseau, forte latence inattendue pour certains flux critiques, changement de la topologie causé par la réorganisation/reconfiguration de composants de la chaine de production dans l'usine etc.). Cette solution utilisera les méthodes de l'intelligence artificielle pour apprendre par l'expérience les conditions qui amènent au non-respect des exigences des flux applicatifs (forte latence, faible bande passante?). L'apprentissage intervient pour reconnaitre, en amont, les situations pouvant amener le non-respect des contraintes des flux applicatifs et également prévoir les effets de modifications des données d'entrées (nouveau terminal, réorganisation de la topologie sous-jacente, etc.) sur les niveaux de QoS assurés aux flux en cours d'acheminement. En se basant sur une telle connaissance, la solution anticipera les situations de dégradation de la QoS et, en conséquence, mettra en place une reconfiguration du réseau déterministe pour préserver la QoS qui permettra de respecter les contraintes associées à chaque flux applicatif.

Télécharger l'offre (.zip)

Allocation de ressources distribuée pour des réseaux maillés d'utilisateurs mobiles en spectre partagé

Département Systèmes (LETI)

Laboratoire Sans fils Haut Débit

Ecole d'ingénieur/ Master2 informatique / télécom

01-09-2021

SL-DRT-21-0186

mickael.maman@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Dans les futurs réseaux 5G, il sera important de pouvoir déployer et gérer facilement un réseau privé d'utilisateurs mobiles comme une flotte de véhicules ou de drones. L'objectif de cette thèse est de définir une allocation de ressources distribuée pour des réseaux maillés d'utilisateurs mobiles dans le spectre partagé grâce à une mise en commun de ressources (temps/fréquence) et au management efficace des faisceaux d'antennes directives. Alors que les études existantes portent principalement sur la maximisation des performances de réseaux maillés multi-beam de type backhaul statique, nous nous intéresseront à un apprentissage local/distribué collaboratif entre des utilisateurs mobiles. La première étape de cette thèse sera d'intégrer un modèle réaliste d'antennes directives sub 6-GHz et/ou mmW dans un simulateur réseau. Le premier objectif sera de faire un compromis entre la spatialité de la directivité, l'efficacité de l'antenne et la complexité de l'algorithme pour des communications point à point et point à multi-point. Le second objectif sera de contextualiser les fonctionnalités de l'antenne entre les phases de communication, de découverte ou de suivi. La seconde étape de cette thèse concernera le design du protocole d'allocation de ressources distribuée durant différentes étapes de la vie du réseau: le déploiement, l'auto-optimisation et l'auto-guérison. Un compromis sera fait entre le type et le temps de (re)configuration des antennes, la précision de l'alignement des faisceaux, le temps de cohérence du canal pour des utilisateurs mobiles (connectivité volatile) et le temps de convergence du protocole d'allocation.

Télécharger l'offre (.zip)

Capteurs piézoélectriques souples & innovants pour interface tactile et acoustique - Capteurs multifonctions

Département Systèmes (LETI)

Laboratoire Autonomie et Intégration des Capteurs

Ecoles d'ingénieurs / Master 2 en nanotechnologies, physique du solide, expérimentation et simulations (COMSOL), ou mécatronicien avec des connaissances en électronique, architectures électroniques et programmation.

01-09-2021

SL-DRT-21-0205

elise.saoutieff@cea.fr

Systèmes cyberphysiques - capteurs et actionneurs (.pdf)

Le CEA a mis au point un nano capteur piézoélectrique apte à restituer des efforts mécaniques selon les 3 axes. Ce capteur est composé de nanofils de GaN obtenus par croissance organisée, lesquels présentent des propriétés piézoélectriques. Un des objets de la thèse est d'utiliser ce capteur pour former une matrice tactile et déformable via l'assemblage et l'intégration de plusieurs de ces capteurs dans un substrat souple. Cette surface tactile doit permettre ensuite de restituer les efforts/déformations appliqués en chacun de ses points via une structuration particulière de la surface et une électronique d'interrogation adaptée. Cette technologie a fait l'objet de plusieurs développements, dont une thèse, en interne CEA et avec des collaborations extérieures ; le candidat s'appuiera sur une électronique développée au laboratoire. Des efforts de compréhension et d'optimisation sont encore à poursuivre, notamment pour modéliser l'interaction entre les nanofils, la matrice et le substrat souple, l'ensemble étant sollicité par l'environnement extérieur. Pour cela le candidat pourra s'appuyer sur les compétences du laboratoire et sur des outils de simulations multi-physique mis à sa disposition. Les résultats de la modélisation permettront de dimensionner la matrice idéale (épaisseur du substrat, longueur des nano-fils, structuration de la surface, disposition des électrodes de collecte des charges?). A partir de ce dimensionnement, et à l'aide de l'équipe du laboratoire, il fabriquera un prototype qui permettra notamment de confronter les simulations avec les résultats expérimentaux. Les travaux proposés visent également à répondre à des questions fondamentales autour du couplage d'effets piézoélectriques avec les effets pyroélectriques, optique voir acoustique, intrinsèques au GaN. Les effets de la température ou du couplage piézoélectrique/pyroélectrique sur le comportement physique (et électronique) du capteur seront étudiés. Ces aspects pourront venir complémenter le modèle existant. De plus, de nombreux axes d'amélioration demeurent par l'utilisation de nouveaux matériaux qu'il conviendra de caractériser en vue de l'application (caractérisations structurale, mécanique, électrique, optique, thermique). Les applications visées sont typiquement la peau électronique pour la robotique, la mesure de textures, la reconnaissance de la forme des objets, les interfaces tactiles intégrant notamment la mesure d'effort multipoints et multi-directions et la mesure des efforts en glissement. De plus, la multifonctionnalité du capteur peut ouvrir la voie à de nouvelles applications innovantes.

Télécharger l'offre (.zip)

Architectures et circutis recepterus RF mmW large bande pour modulations innovants

Département Systèmes (LETI)

Laboratoire Architectures Intégrées Radiofréquences

Master recherche en RF et ou microelectronique

01-03-2021

SL-DRT-21-0216

joseluis.gonzalezjimenez@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Les réseaux de télécommunication existants évoluent vers des besoins de très haute capacité et haut débit de communication qui nécessiteront des architectures d'émetteur-récepteur innovantes. Pour les liaisons de données sans fil dans le cadre des systèmes 5G et au-delà de la 5G des nouvelles solutions d'émetteurrécepteur seront nécessaires dans les 5 à 10 prochaines années pour pouvoir fournir des débits de données de l0irdre de 100Gb/s ou supérieurs en utilisant efficacement le large spectre disponible aux fréquences millimétriques (mmW). L'architecture traditionnelle des émetteurs-récepteurs qui a été utilisée dans le passé peut entraîner une consommation d'énergie trop importante ou tout simplement une performance insuffisante pour répondre à ce défi. L'institut de recherche LETI a mené des investigations au cours des dernières année dans le domaine des schémas de modulation et des architectures d'émetteurs-récepteurs novateurs afin de répondre aux défis liés a l'augmentation du débit susmentionné dans les environnements sans fil, compte tenu des limites imposées par les dispositifs électroniques existants nécessaires à la construction des émetteursrécepteurs. Actuellement, certaines solutions ont été proposées d'un point de vue théorique qui doivent être avancées afin de trouver une mise en oeuvre optimale avec les technologies de pointe pour la conception et la fabrication de circuits intégrés. Cette thèse s'inscrit dans la continuité de ces travaux précédents et explorera la mise en oeuvre pratique de circuits basés sur des schémas de modulation et des architectures innovantes pour des récepteurs mmW à haute vitesse, à large bande passante et à l'épreuve des imperfections.

Télécharger l'offre (.zip)

Millimeter Wave Short Range RadCom

Département Systèmes (LETI)

Laboratoire Architectures Intégrées Radiofréquences

M.Sc Digital communication and signal processing Wireless integrated circuit and systems

01-09-2021

SL-DRT-21-0258

cedric.dehos@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Les prochains dispositifs mobiles devraient embarquer des circuits d'émission réception en bande millimétrique leur permettant d'échanger des données à très haut débit à courte portée (quelques cm), en remplacement des cables et connecteurs. Leur très large bande passante pourrait être également mise à profit pour des applications de radar de proximité, reconnaissance de geste, identification biométrique ou interface homme-machine. L'objectif de cette thèse est d'investiguer la faisabilité d'une double modalité radar et communication pour ces architectures de transceivers en conservant leurs basse consommation et bas cout. L'architecture non-cohérente utilisée dans ces circuits pourrait évoluer afin d'intégrer une fonctionnalité radar basée sur des impulsions (IR-UWB) ou une modulation de fréquence (FM-CW), avec un impact différent sur les performances des systèmes radar et de communication. Le candidat devra dans une approche système proposer et évaluer différentes architectures radiofréquences compatibles avec du traitement radar et de l'algorithmie à faible complexité pouvant être intégrés dans un micro-controleur.

Télécharger l'offre (.zip)

Convertisseur DC/DC sans inductance

Département Systèmes (LETI)

Laboratoire Electronique Energie et Puissance

Ingénieur, BAC+5, Electronique, Electrotechnique, Automatique

01-10-2020

SL-DRT-21-0277

ghislain.despesse@cea.fr

Efficacité énergétique pour bâtiments intelligents, mobilité électrique et procédés industriels (.pdf)

La réduction des dimensions des convertisseurs de puissance actuels est essentiellement liée à la montée en fréquence de fonctionnement. Cependant, aujourd'hui, nous atteignons plusieurs limites dont celles relevant des composants magnétiques. Pour cause, l'énergie, qui peut être stockée par cycle dans une inductance, diminue drastiquement avec l'augmentation de la fréquence. Pour remédier à cette limitation, nous avons étudié une alternative au stockage magnétique : le stockage transitoire d'énergie sous forme mécanique par la mise en mouvement d'un résonateur piézoélectrique. Nos premiers travaux, qui sont des premières mondiales, nous ont permis de valider le principe pour des puissances allant de 1 à 100W. L'objectif de la thèse sera d'étendre le principe de conversion à d'autres variantes topologiques et notamment à une version isolée galvaniquement. Une grande partie du travail vise la mise au point du cycle électrique de commande qui doit permettre à la fois d'entretenir la résonance de la structure mécanique et d'effectuer des transferts de puissance électrique sans pertes. La mise en ?uvre de ce cycle nécessitera, en outre, la mise au point d'une électronique très basse consommation qui intègrera plusieurs mécanismes de synchronisation et de régulation pour assurer des commutations à zéro de tension, assurer l'entretien des oscillations et réguler la tension de sortie. Le candidat pourra s'appuyer sur l'expertise du laboratoire d'accueil dans le domaine de la conversion et de la piézoélectricité. La thèse se déroulera au CEA/LETI situé à Grenoble (laboratoire orienté microélectronique et microsystème), elle sera dirigée par Mr Ghislain DESPESSE du CEA et par Mr François COSTA du SATIE (laboratoire de physique appliqué et génie électrique rattaché à l'ENS Paris-Saclay).

Télécharger l'offre (.zip)

Robustesse et performances d'électrodes optimisées de cellules à oxyde solide

Département Thermique Biomasse et Hydrogène (LITEN)

Laboratoire Production d'Hydrogène

The student will have transversal competences in materials and/or mechanic of solids. Skills in modelling will be also appreciated.

01-10-2021

SL-DRT-21-0289

maxime.hubert@cea.fr

Solutions avancées pour l?hydrogène et les piles à combustible pour la transition énergétique (.pdf)

Les cellules à oxyde solide (SOCs) sont des convertisseurs électrochimiques fonctionnant à hautes températures qui peuvent être utilisés pour produire soit de l'électricité en mode pile à combustibles (SOFC) ou de l'hydrogène en mode d'électrolyse (SOEC). Grâce à un large éventail de cas d'application, cette technologie est susceptible d'offrir de nombreuses solutions innovantes pour assurer la transition vers l'utilisation massive d'énergies renouvelables. Néanmoins, la durée de vie de cette technologie reste à ce jour insuffisante pour envisager son dépoilement industriel. En effet, la durabilité des SOCs est limitée par de nombreux phénomènes physiques dont notamment l'endommagement mécanique des électrodes. Par exemple, la formation de microfissures dans l'électrode dite à hydrogène est une des sources majeures de dégradation. Les mécanismes mis en jeu ainsi que l'impact des microfissures sur les performances restent cependant mal connus à ce jour. Par une approche de modélisation multi-physique, il est proposé dans cette thèse d'établir le lien entre la baisse des performances de l'électrode à hydrogène et son endommagement mécanique. Une fois le modèle validé sur des expériences originales, une analyse de sensibilité sera conduite et des recommandations seront émises pour des électrodes optimisées. Une ou deux solutions seront retenues et fabriquées pour une validation finale.

Télécharger l'offre (.zip)

Réseau de capteurs et edge AI basse consommation pour la maintenance prédictive

Département Systèmes (LETI)

Laboratoire Autonomie et Intégration des Capteurs

ingénieur ou master 2 Traitement du Signal, Machine learning, Programmation Embarquée

01-10-2021

SL-DRT-21-0312

vincent.heiries@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

La maintenance prédictive est un enjeu majeur pour l'industrie du futur (industrie 4.0), permettant de maximiser les temps d'utilisation des pièces, d'augmenter la durée de vie des machines, de réduire les pannes ainsi que les temps d'immobilisation des équipements; avec à la clé, des gains économiques et environnementaux pour l'entreprise. La maintenance prédictive s'appuie sur des réseaux de capteurs placés sur les équipements à monitorer et sur des mécanismes d'apprentissages mettant en ?uvre de l'intelligence artificielle (Machine Learning). Ces capteurs sont aujourd'hui essentiellement filaires, ce qui rend leur installation complexe : passage de câbles, passage de murs, environnements tournants,? La solution idéale serait de disposer de capteurs communicants sans fil; se pose alors la question de leur autonomie énergétique, ce qui est l'enjeu de cette thèse. Ce sujet de thèse, qui s'inscrit dans la roadmap "Systèmes Cyber-Physiques" du Département Systèmes du CEA-LETI (Grenoble), aura pour objectif de développer un réseau de capteurs basse consommation sans fil permettant de surveiller les équipements industriels et d'anticiper leur défaillance. La thèse s'appuiera sur des solutions technologiques avancées mettant en ?uvre de l'intelligence artificielle embarquée (edge AI), du traitement de données provenant de différents capteurs (audio, vibrations) ainsi que de l'électronique basse consommation (hardware et firmware) notamment pour les aspects traitement de l'information et communication. L'intelligence artificielle est en plein essor avec des enjeux majeurs pour la santé, le transport, la protection de l'environnement ou encore l'industrie. Actuellement, les calculs sont majoritairement déportés sur des serveurs (couramment nommés cloud), ce qui nécessite la transmission complète des données mesurées par les capteurs (par ex. signal audio pour un microphone, ou vibrations pour un accéléromètre). Cette architecture est simple à déployer mais peu efficace du point de vue énergétique avec des serveurs de calcul surdimensionnés pour la plupart, et peu résiliente en cas de défaut de transmission des données. La tendance est donc à l'implémentation des algorithmes de traitement au plus proche des capteurs pour réduire les taux d'utilisation des systèmes de communication, décharger les serveurs de calcul en réduisant leur consommation énergétique et améliorer la résilience de ces réseaux de capteurs. Partant de ce constat, il reste à comprendre comment une tâche de traitement de données initialement réalisée par des serveurs sans contraintes d'alimentation et de puissance de calcul peut être déportée sur un réseau de capteurs à énergie disponible limitée et à puissance de calcul réduite (par ex. microcontrôleurs faible consommation). A cette fin, on pourra entre autre, mettre en ?uvre des méthodes utilisées dans le domaine du compressive sensing, et appliquer des algorithmes de machine learning dans un espace compressé. Le c?ur de la thèse portera donc sur la minimisation de la consommation énergétique hardware et firmware des systèmes électroniques embarqués implémentant de l'intelligence artificielle et visant l'application "maintenance prédictive pour l'industrie". Les questions de recherche et les innovations associées cibleront: (i) le développement d'architectures électroniques basse consommation (fonctions de réveil, ajustement de la fréquence de mesure,?), (ii) le développement et l'implémentation sur microcontrôleurs d'algorithmes de Machine Learning pour les fonctions capteurs (audio, vibrations, températures) et (iii) le développement et l'implémentation sur microcontrôleurs d'algorithmes de Machine Learning pour l'optimisation de l'énergie et de l'autonomie. Un dispositif électronique complet (hardware + firmware) mettant en ?uvre ces innovations et déployé en situation réelle est attendu pour la fin de la thèse.

Télécharger l'offre (.zip)

Conception et fabrication de composants à base d'alliage de GeSn pour la détection de gaz

Département d'Optronique (LETI)

Laboratoire des Capteurs Optiques

école d'ingénieur ou master en physique fondamentale, physique du solide, optique, optoélectronique ou photonique.

01-10-2020

SL-DRT-21-0315

vincent.reboud@cea.fr

Photonique, imageurs et écrans (.pdf)

L'un des principaux défis actuels de la photonique sur silicium est d'obtenir un laser intégré technologiquement compatible avec les fonderies de la microélectronique. Les lasers à semi-conducteurs traditionnels utilisent des semi-conducteurs III-V qui ne sont pas acceptés dans les fonderies de silicium, contrairement aux semi-conducteurs du groupe IV. Le CEA Grenoble fait partie des rares laboratoires à avoir déjà fait la démonstration du laser à pompage optique dans l'infrarouge moyen dans les semi-conducteurs du groupe IV, à la fois en Ge et GeSn. Avec des hétérostructures en GeSn relaxé ou sous contraintes en tension et des puits quantiques en alliages silicium-germanium-étain (Si) GeSn, nous ciblons aujourd'hui le laser continu à température ambiante et la réalisation de s photodétecteurs moyen infrarouge en 200 mm. Pour atteindre l'effet laser à température ambiante, il faut améliorer le gain optique et optimiser le confinement des porteurs. Les améliorations nécessiteront de nouvelles configurations de puits quantiques et de hétérojonctions en germanium étain, en jouant sur les compositions atomiques et la déformation mécanique à l'échelle microscopique. Comme pour les lasers que nous avons déjà obtenus, les nouvelles couches de GeSn (Si) seront épitaxiées en 200 mm au CEA Leti, puis traitées par le candidat au doctorat dans des salles blanches de plus petite échelle. Les développements réalisés pour les sources lasers seront utilisés pour la réalisation des photodétecteurs. La thèse se déroulera au sein du Département Optique et Photonique dans le Laboratoire de Capteur Optique, qui est un leader mondial dans le développement et la fabrication de composants photoniques Silicium (ou CMOS) pour la détection de gaz dans l'infra-rouge. Les objectifs de la recherche consisteront : (i) A réduire le nombre de défauts cristallins dans les régions de gain GeSn, (ii) à concevoir des empilements de GeSn (Si) efficaces qui confinent à la fois les électrons et les trous, tout en offrant un fort gain optique (iii) à appliquer et contrôler la contrainte en tension dans les couches d'étain au germanium (iv) à évaluer le gain optique sous pompage optique et injection électrique, à différentes contraintes et niveaux de dopage (v) à concevoir et fabriquer des cavités laser à fort confinement optique (vi) à obtenir des lasers du groupe IV à base de germanium qui soient accordables et qui lase en continu. (vii) à tester les composants fabriqués (sources et photodétecteurs) dans des cellules de détection de gaz À plus long terme, ces lasers seront largement utilisés dans les dispositifs miniaturisés omniprésents de faible puissance pour la détection optique de gaz et la surveillance de l'environnement. Ce travail impliquera des contacts avec des laboratoires étrangers travaillant sur le même sujet dynamique.

Télécharger l'offre (.zip)

Sources de temps optomécaniques

Département Composants Silicium (LETI)

Laboratoire Composants Micro-Capteurs

Le/la candidat/e sera en possession d'un Master 2/ Ecole d'ingénieur généraliste ou physique appliquée ; formation en nanotechnologies, optique ou télécom, physique des semi-conducteurs.

01-09-2021

SL-DRT-21-0351

marc.sansaperna@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Les sources de temps (reference oscillators) sont des composants qui génèrent un signal à une fréquence très précise, habituellement à partir de la vibration d'un élément mécanique en résonance. Ces dispositifs sont aujourd'hui utilisés dans la grande majorité des circuits électroniques : un smartphone ou tablette, par exemple, peut contenir jusqu'à sept sources de temps. Cependant, l'arrivée de nouvelles technologies comme la 5G, les systèmes de conduite autonome dans les voitures ou bien certaines applications aérospatiales nécessitent des performances qui ne sont pas atteignables avec les technologies commercialement disponibles. Ainsi, le développement de sources de temps constituées de résonateurs micromécaniques (MEMS) en silicium à haute fréquence (1 ? 5 GHz aujourd'hui, plusieurs dizaines de GHz dans le futur) constitue une rupture technologique prometteuse. Cependant, la réalisation de tels dispositifs performants dans la gamme du GHz reste un défi, principalement dû à la difficulté de détecter avec précision des vibrations extrêmement faibles. Il s'agit donc d'utiliser ici une transduction optomécanique sur le même principe que les détecteurs d'ondes gravitationnelles, mais intégrée à l'échelle nanométrique ayant des sensibilités de détection extrêmes. Cette technique maintenant bien maîtrisée au Leti pourra être alliée à l'utilisation de matériaux piezoélectriques pour augmenter le signal disponible : des preuves de principe de ce concept ont été réalisées très récemment pour la recherche fondamentale mais il n'a jamais été appliquée jusqu'ici. Cette technologie semble pourtant le candidat idéal pour réaliser l'objectif de la thèse: l'implémentation d'une source de temps MEMS basée sur cette technologie optomécanique de rupture. La thèse se déroulera au laboratoire de micro-capteurs du CEA-Leti, en collaboration avec le laboratoire de composants radiofréquences. Le Leti est un pionnier dans le domaine de l'optomécanique et des matériaux piezoélectriques intégrés sur puce. Le doctorant travaillera en collaboration avec les équipes du Leti pour concevoir et dessiner le résonateur et son procédé de fabrication, sur la base de modèles analytiques et de simulations éléments finis. Ensuite, elle/il aura la possibilité de fabriquer ses dispositifs en salle blanche, et de les tester dans les laboratoires du Leti, afin de réaliser pour la première fois un tel démonstrateur. Le/la candidat/e sera en possession d'un Master 2/ Ecole d'ingénieur généraliste ou physique appliquée ; formation en nanotechnologies, optique ou télécom, physique des semi-conducteurs.

Télécharger l'offre (.zip)

Mémoires ferroélectriques ultra-basse consommation à base de HfO2 ferroélectrique: vers des matrices intégrables au noeud 28nm

Département Composants Silicium (LETI)

Laboratoire de Composants Mémoires

01-10-2021

SL-DRT-21-0362

laurent.grenouillet@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

La découverte récente des propriétés ferroélectriques du matériau HfO2 déposé en couches minces génère actuellement un intérêt très fort dans la communauté scientifique. En effet cette découverte ouvre la voie à l'intégration de mémoires non volatiles ultra faible consommation au sein de n?uds technologiques les plus avancés. Très récemment, des résultats très prometteurs ont été présentés par notre groupe sur l'intégration de capacités ferroélectriques à base de HfO2 (FeRAM) dans le Back-End de circuits CMOS 130nm. L'objectif de la thèse sera d'optimiser les performances mémoires de ces FeRAM (cyclabilité, fenêtre mémoire, temps d'écriture et de lecture, tenue en température), de les intégrer au sein de matrices, et de montrer qu'il est possible de réduire leur dimension afin de les intégrer dans des n?uds technologiques avancés (28nm FDSOI).

Télécharger l'offre (.zip)

Amélioration du désassemblage par canaux auxilaires

Département Systèmes (LETI)

Laboratoire Sécurité des Objets et des Systèmes Physiques

Bac +5 Informatique ou Mathématique

01-09-2021

SL-DRT-21-0375

thomas.hiscock@cea.fr

Cybersécurité : hardware et software (.pdf)

Le désassemblage par canaux auxiliaires (ou Side Channel Based Disassembling, SCBD) consiste à retrouver le code exécuté par un microprocesseur à partir de phénomènes physiques produits par le circuit lors de son fonctionnement. La consommation de courant ou encore le rayonnement électro-magnétique sont particulièrement faciles à mesurer et très exploitables par ce type d'attaques. Avoir une fine caractérisation de ce type d'attaques est essentiel pour sécuriser les systèmes, notamment contre de la rétro-conception. Le laboratoire LSOSP est très actif sur le sujet et a notamment proposé une technique de reconstruction mono-bit très efficace sur des petit microcontrôleurs. L'objectif de cette thèse est de contribuer à l'amélioration des techniques de désassemblage par canaux auxiliaires. Nous chercherons notamment à prouver si ce type d'attaques peuvent être applicables à des processeurs plus complexes, comme ceux que l'on peut trouver sur un téléphone. Au cours de la thèse, nous chercherons donc à étudier finement les fuites de c?urs complexes et adapter des outils du machine learning pour extraire des informations à partir de mesures extrêmement bruitées. Au bout des trois ans, nous espérons avoir une meilleur vue de la faisabilité du désassemblage sur des c?urs complexes et également des réflexions sur des contremesures qu'il serait possible d'utiliser.

Télécharger l'offre (.zip)

Techniques de focalisation en champ proche dans les milieux inhomogènes aux fréquences millimétriques

Département Systèmes (LETI)

Laboratoire Antennes, Propagation, Couplage Inductif

Master electrical engineering / hyperfréquences

01-10-2021

SL-DRT-21-0378

antonio.clemente@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Dans des multiples applications telles que le transfert d'énergie sans fil, l'imagerie micro-ondes, le contrôle industriel, etc., il est nécessaire de former, diriger ou encore focaliser le rayonnement électromagnétique dans une région spécifique de l'espace. Cette région peut se situer dans l'environnement proche de la surface rayonnante qui a généré l'onde électromagnétique. Dans ce cas, on parle de système focalisant en champ proche. Avec le développement des futurs systèmes de communication de type « Beyond 5G » et 6G, la nécessité de focaliser le faisceau en champ proche peut aussi s'appliquer dans le cas des surfaces intelligentes reconfigurables. Ces dispositifs, si dotés d'éléments reconfigurables, peuvent être utilisés pour manipuler les ondes électromagnétiques et contrôler de manière dynamique les propriétés du canal de propagation. Enfin, la focalisation en champ proche peut aussi être un élément différentiant pour le développement des futurs systèmes d'imagerie médicale qui nécessitent de former et diriger l'énergie dans corps humain afin de diagnostiquer, suivre et / ou soigner des pathologies spécifiques. Dans ce contexte, la focalisation en champ proche peut être utilisée pour améliorer la résolution du système d'imagerie en optimisant le transfert / transmission d'énergie. Le premier objectif de cette thèse est de développer des outils de synthèse, de conception et d'optimisation de systèmes focalisants en champ proche en milieux non homogènes. Ces techniques seront développées en considérant les propriétés électromagnétiques des milieux. La synthèse du champ d'ouverture se fera à partir de l'expansion modale du champ et de la théorie des potentiels vecteurs. Après cette phase, les procédures de synthèse et d'optimisation développées seront utilisées pour concevoir un système focalisant en champ proche opérant aux fréquences millimétriques et / ou sub-THz (30 ? 300 GHz). Ces antennes seront fabriquées et caractérisées en chambre anéchoïque. Des simulations système et / ou des mesures seront aussi faite pour analyser l'impact du système focalisant en champ proche.

Télécharger l'offre (.zip)

Imagerie sans lentille et intelligence artificielle pour un diagnostic rapide des infections

Département Microtechnologies pour la Biologie et la Santé (LETI)

Laboratoire Systèmes d'Imagerie pour le Vivant

Master 2 biologie, data intelligence

01-10-2020

SL-DRT-21-0380

caroline.paulus@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

L'objectif de la thèse est de développer une technologie portable d'identification des pathogènes. En effet, dans un contexte d'extension des déserts médicaux et de recrudescence des infections antibiorésistantes, il est urgent de développer des techniques innovantes pour le diagnostic rapide des infections en milieu isolé. Parmi les techniques optiques d'identification des pathogènes, les méthodes d'imagerie sans lentille occupent une place particulière car elles sont les seules à l'heure actuelle à pouvoir proposer une caractérisation simultanée d'un grand nombre de colonies, le tout avec une technologie bas coût, portable et peu énergivore. L'objectif de la thèse est d'explorer les potentialités de l'imagerie sans lentille associée à des algorithmes d'intelligence artificielle pour identifier rapidement les colonies bactériennes présentes dans un liquide biologique. La thèse visera à optimiser le dimensionnement du système imageur (sources, capteurs) et à étudier des algorithmes de traitement d'images et d'apprentissage machine nécessaires pour l'identification des colonies. Deux cas d'applications cliniques seront étudiés.

Télécharger l'offre (.zip)

Neurones oscillants pour le calcul d'optimisation et la mémoire associative

Département Composants Silicium (LETI)

Laboratoire d'Intégration des Composants pour la Logique

Niveau M2, formation en micro/nanoélectronique (technologie et conception) - des connaissances théorique et pratiques des réseaux de neurones pour l'IA sont un avantage

01-10-2021

SL-DRT-21-0393

louis.hutin@cea.fr

Data intelligence dont Intelligence Artificielle (.pdf)

Les réseaux de Hopfield sont des réseaux de neurones récurrents qui permettent de réaliser des fonctions de mémoire associative. En soumettant leurs éléments à des fluctuations ajustables, ces réseaux peuvent également être adaptés à la résolution efficace de problèmes d'optimisation combinatoire NP-difficiles. De tels problèmes, dont la résolution exacte en temps polynomial est hors de portée de machines de Turing déterministes, trouvent des applications dans des domaines tels que les opérations logistiques, le design de circuits (e.g. placement-routage), le diagnostic médical, la gestion de réseaux intelligents (e.g. smart grid), la stratégie de management etc. Le sujet proposé s'inscrit dans le contexte de la recherche d'accélérateurs hardware pour l'intelligence artificielle. L'approche considérée en particulier porte sur le choix d'oscillateurs verrouillés en phase par injection (ILO: Injection-Locked Oscillators) pour réaliser la fonction du neurone. L'objectif sera la conception, la fabrication et la démonstration de réseaux de neurones binaires couplés par des poids synaptiques ajustables pour réaliser des fonctions de mémoire associative (ex: reconnaissance de forme) ou d'optimisation combinatoire (ex: coloration de graphe, partitionnement maximal,?).

Télécharger l'offre (.zip)

Étude, évaluation, et validation des performances d'un système de mesure du bore par absorption neutronique

Département Métrologie Instrumentation et Information (LIST)

Laboratoire Capteurs et Architectures Electroniques

Master 2 ou diplôme d'ingénieur

01-10-2021

SL-DRT-21-0397

adrien.sari@cea.fr

La concentration en bore dans le fluide du circuit primaire d'un réacteur nucléaire doit être finement maîtrisée afin de garantir la sûreté de ce dernier. En effet, une excursion de la concentration en bore pourrait potentiellement entraîner un risque de criticité. Un système de mesure nucléaire en ligne ayant pour fonction de surveiller la concentration en bore dans le fluide primaire du réacteur est ainsi nécessaire. Un tel système est couramment dénommé « boremètre ». Le sujet de thèse proposé est constitué de trois axes de recherche. Le premier axe vise à étudier par simulation Monte-Carlo, puis conceptualiser et formaliser théoriquement le comportement des deux principaux critères de performances (taux de comptage et contraste) sous l'influence des différentes caractéristiques du boremètre. Le second axe de recherche a pour objectif d'évaluer et de valider expérimentalement l'interprétation des effets mis en jeu au sein du boremètre et les concepts théoriques formulés. Ces travaux expérimentaux feront l'objet d'une collaboration étroite avec le Laboratoire National Henri Becquerel (LNHB). Le troisième axe de recherche de cette thèse a pour ambition de concevoir un boremètre innovant destiné à mesurer la concentration en bore dans le fluide primaire au plus proche du c?ur du réacteur nucléaire. Un tel système permettrait d'identifier le plus rapidement possible une anomalie sur la valeur de la concentration en bore au niveau du c?ur du réacteur. Cependant, les contraintes imposées par un tel environnement de mesure devront être prises en compte, et une méthodologie de mesure adaptée sera élaborée. Différentes approches de compensation en température et en débit du fluide seront l'objet d'investigations poussées.

Télécharger l'offre (.zip)

Radiolocalisation Profonde en Milieux Complexes via Méthodes d'Intelligence Artificielle

Département Systèmes (LETI)

Laboratoire Communication des Objets Intelligents

Master 2 de Recherche en Traitement du Signal (application Telecoms) et/ou Intelligence Artificielle

01-10-2021

SL-DRT-21-0398

benoit.denis@cea.fr

Réseaux de communication, internet des objets, radiofréquences et antennes (.pdf)

Diverses technologies et standards de localisation sans fil à bas coût ont vu le jour ces dernières années (ex. standard UWB/IEEE802.15.4z, GPS RTK « low cost », radio cellulaire en bandes millimétriques...), couvrant ainsi les besoins d'une pluralité de nouveaux services topo-dépendants (ex. mobilité durable et transports intelligents, villes intelligentes, industrie 4.0, cyber-sécurité, etc.). Toutefois, en dépit des bonnes performances théoriques prêtées à ces systèmes, la présence d'obstructions radio et de trajets multiples dégrade en pratique considérablement la précision et la continuité de localisation (ex. localisation véhiculaire en canyons urbains, localisation indoor en milieux industriels denses?). Dans le cadre de cette thèse, on se propose d'évaluer le potentiel d'approches issues du domaine de l'intelligence artificielle, et en particulier de l'apprentissage automatique (profond), pour appréhender la richesse et la complexité des signaux radio reçus au regard du problème de localisation. Typiquement, on cherchera à tirer profit de l'information de localisation « cachée », que peuvent recéler les signaux multi-trajets conjointement observables au niveau de plusieurs liens radio en situation de mobilité. Contrairement aux traitements conventionnels, qui reposent majoritairement sur des modèles radio paramétriques posés a priori, simplistes et difficiles à calibrer, on cherchera alors à apprendre puis à généraliser les relations fortement non-linéaires unissant métriques radio (c.-à-d., de métriques extraites de signaux multi-trajets/multi-liens à grande dimension) et descripteurs de localisation (ex. position relative/absolue, vitesse, orientation, conditions de visibilité?). Des stratégies de localisation dites « profondes » seront ensuite proposées afin de prédire, corriger et compléter les attributs de localisation manquants et/ou erronés, directement en termes de positionnement et de poursuite au niveau système (c.-à-d., sans en passer par des étapes intermédiaires de correction, au niveau de chaque lien radio indépendamment). Les approches proposées seront alimentées et testées au moyen de larges bases de données radio, comprenant des mesures collectées sur le terrain à partir de dispositifs radio réels, ainsi que des données synthétiques issues de simulations déterministes (de type tracer de rayons).

Télécharger l'offre (.zip)

Intégration d'interconnexions supraconductrices thermiquement isolantes pour applications quantiques et spatiales

Département Composants Silicium (LETI)

Laboratoire Packaging et 3D

Mater 2 en physique des matériaux, physiques des semi-conducteurs, microélectronique.

01-09-2021

SL-DRT-21-0411

jean.charbonnier@cea.fr

Nouveaux paradigmes de calculs, circuits et technologies, dont le quantique (.pdf)

Le projet Quantum Silicon Grenoble, incluant le CEA-LETI, CEA-IRIG et l'Institut Néel, vise à réaliser un ordinateur quantique à base de bits quantiques (qubits) en silicium. Les conditions de fonctionnement des qubits (températures cryogéniques = 1K, hautes fréquences de l'ordre du GHz, forte densité de signaux) nécessitent le développement de briques technologiques adaptées, en particulier, pour le routage des signaux d'entrée et de sortie des qubits vers une électronique de contrôle. Les métaux supraconducteurs sont des candidats idéaux pour remplir cette fonction de par l'annulation de leur résistance à basse température et leur faible conductivité thermique qui permet de protéger les qubits de l'échauffement généré par l'électronique de contrôle embarquée sur le même module. Le contexte est le même pour les applications de spectroscopes infra rouge embarqués sur les satellites. La thèse se contrera d'abord sur l'étude de matériaux supraconducteurs (Nb, NbN, TiN, TiNAl) en caractérisant leurs propriétés structurales, électriques et supraconductrice à basse température pour leur intégration dans une piste de routage et en plots multicouches. Elle se poursuivra, en étroite collaboration avec le CEA Irfu à Saclay, par la mise en place d'un protocole de mesure de conductivité thermique à basse température ainsi que par la conception et l'élaboration d'échantillons adaptés. L'objectif final sera de mettre à profit les connaissances acquises pour concevoir le système d'interconnexions supraconductrices du prototype de module quantique au sein de l'équipe.

Télécharger l'offre (.zip)

Simulation et optimization d'une photodiode à avalanche (SPAD) couplée à un absorber Germanium

Département d'Optronique (LETI)

Laboratoire d'Imagerie sur Silicium

Physique du solide et simulations

01-01-2021

SL-DRT-21-0477

Les dispositifs optoélectroniques avancés tels que la diode à avalanche à photon unique (SPAD) sont maintenant largement utilisés dans les domaines de l'imagerie 3D, de l'assistance de caméra, de la télémétrie laser et de la proximité. La prochaine génération de SPAD sera consacrée à la télémétrie 3D en temps de vol et à la détection rapide des mouvements, notamment pour les LiDaR utilisés dans les voitures à conduite autonome. Le travail de thèse consistera à développer et exploiter des simulateurs développé à ST-Microelectronics pour les dispositifs optoélectroniques et plus spécifiquement, le SPAD à absorption séparée Ge. Dans ce type de capteurs, la lumière infrarouge est absorbée dans le germanium et les porteurs photogénérés sont transportés dans la zone d'avalanche en silicium pour l'amplification du signal. Une connaissance approfondie du transport entre les deux matériaux est fondamentale pour l'optimisation de l'appareil. Cela se fera par simulation et étalonnages des modèles. Tout d'abord, des simulations de processus d'implantation de dopage, mais aussi de déformation résiduelle dans la couche épitaxiale de Ge seront utilisées pour extraire des profils de dopage réalistes à insérer dans le code Monte Carlo (MC). Deuxièmement, en utilisant la simulation 3D de particules MC pour résoudre l'équation de transport de Boltzmann, le comportement temporel de différentes conceptions de dispositifs SPAD basés sur le Si et le Ge sera analysé statistiquement afin de réduire la 'gigue' et d'améliorer la probabilité de détection des photons. La technique MC est un outil unique pour analyser les trajectoires de particules uniques ainsi que l'évolution temporelle des courants et des tensions aux bornes du dispositif.

Télécharger l'offre (.zip)

Voir toutes nos offres